Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Plant Physiol ; 195(1): 502-517, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243831

RESUMO

Apple Valsa canker, caused by the ascomycete fungus Valsa mali, employs virulence effectors to disturb host immunity and poses a substantial threat to the apple industry. However, our understanding of how V. mali effectors regulate host defense responses remains limited. Here, we identified the V. mali effector Vm_04797, which was upregulated during the early infection stage. Vm_04797, a secreted protein, suppressed Inverted formin 1 (INF1)-triggered cell death in Nicotiana benthamiana and performed virulence functions inside plant cells. Vm_04797 deletion mutants showed substantially reduced virulence toward apple. The adaptor protein MdAP-2ß positively regulated apple Valsa canker resistance and was targeted and degraded by Vm_04797 via the ubiquitination pathway. The in vitro analysis suggested that Vm_04797 possesses E3 ubiquitin ligase activity. Further analysis revealed that MdAP-2ß is involved in autophagy by interacting with Malus domestica autophagy protein 16 MdATG16 and promoting its accumulation. By degrading MdAP-2ß, Vm_04797 inhibited autophagic flux, thereby disrupting the defense response mediated by autophagy. Our findings provide insights into the molecular mechanisms employed by the effectors of E3 ubiquitin ligase activity in ascomycete fungi to regulate host immunity.


Assuntos
Ascomicetos , Autofagia , Proteínas Fúngicas , Malus , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Doenças das Plantas/microbiologia , Malus/microbiologia , Malus/metabolismo , Malus/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Nicotiana/microbiologia , Nicotiana/genética , Nicotiana/metabolismo , Interações Hospedeiro-Patógeno , Virulência , Imunidade Vegetal/genética , Ubiquitinação , Resistência à Doença/genética
2.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163540

RESUMO

Cytospora chrysosperma is the main causal agent of poplar canker disease in China, especially in some areas with poor site conditions. Pathogens secrete a large number of effectors to interfere the plant immunity and promote their infection and colonization. Nevertheless, the roles of effectors in C. chrysosperma remain poorly understood. In this study, we identified and functionally characterized a candidate effector CcSp84 from C. chrysosperma, which contained a nuclear localization signal motif at the C-terminal and was highly induced during infection stages. Transient expression of CcSp84 in Nicotiana benthamiana leaves could trigger cell death. Additionally, deletion of CcSp84 significantly reduced fungal virulence to the polar twigs, while no obvious defects were observed in fungal growth and sensitivity to H2O2. Confocal microscopy revealed that CcSp84 labeled with a green fluorescent protein (GFP) was mainly accumulated in the plant nucleus. Further analysis revealed that the plant nucleus localization of CcSp84 was necessary to trigger plant immune responses, including ROS accumulation, callose deposition, and induced expression of jasmonic acid and ethylene defense-related genes. Collectively, our results suggest that CcSp84 is a virulence-related effector, and plant nucleus localization is required for its functions.


Assuntos
Ascomicetos/patogenicidade , Núcleo Celular/metabolismo , Nicotiana/crescimento & desenvolvimento , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Ascomicetos/metabolismo , Vias Biossintéticas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Microscopia Confocal , Sinais de Localização Nuclear , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Domínios Proteicos , Espécies Reativas de Oxigênio , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Virulência/genética
3.
Nature ; 602(7896): 280-286, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34937943

RESUMO

Grafting is possible in both animals and plants. Although in animals the process requires surgery and is often associated with rejection of non-self, in plants grafting is widespread, and has been used since antiquity for crop improvement1. However, in the monocotyledons, which represent the second largest group of terrestrial plants and include many staple crops, the absence of vascular cambium is thought to preclude grafting2. Here we show that the embryonic hypocotyl allows intra- and inter-specific grafting in all three monocotyledon groups: the commelinids, lilioids and alismatids. We show functional graft unions through histology, application of exogenous fluorescent dyes, complementation assays for movement of endogenous hormones, and growth of plants to maturity. Expression profiling identifies genes that unify the molecular response associated with grafting in monocotyledons and dicotyledons, but also gene families that have not previously been associated with tissue union. Fusion of susceptible wheat scions to oat rootstocks confers resistance to the soil-borne pathogen Gaeumannomyces graminis. Collectively, these data overturn the consensus that monocotyledons cannot form graft unions, and identify the hypocotyl (mesocotyl in grasses) as a meristematic tissue that allows this process. We conclude that graft compatibility is a shared ability among seed-bearing plants.


Assuntos
Avena , Raízes de Plantas , Brotos de Planta , Transplantes , Triticum , Ascomicetos/patogenicidade , Avena/embriologia , Avena/microbiologia , Hipocótilo , Meristema , Raízes de Plantas/embriologia , Raízes de Plantas/microbiologia , Brotos de Planta/embriologia , Brotos de Planta/microbiologia , Triticum/embriologia , Triticum/microbiologia
4.
Sci Rep ; 11(1): 19420, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593834

RESUMO

Cinnamaldehyde (Cin) is a natural product obtained from cinnamon and is reported to have a potential anti-fungal, anti-oxidant, anti-inflammatory and anticancer effect. The present study investigated the possible protective role of Cin against tenuazonic acid-induced mycotoxicity in the murine model. Tenuazonic acid (TeA), a toxin produced by Alternaria is a common contaminant in tomato and tomato-based products. Here, Swiss male mice were administered with TeA isolated from Paradendryphiella arenariae (MW504999) (source-tomato) through injection (238 µg/kg BW) and ingestion (475 µg/kg BW) routes for 2 weeks. Thereafter, the prophylaxis groups were treated with Cin (210 mg/kg BW). The experiment was carried out for 8 weeks. The treated groups were compared to the oral and intra-peritoneal experimental groups that received the toxin solely for 8 weeks. Haematological, histopathological and biochemical aspects of the experimental and the control mice were analysed. Sub-chronic intoxication of mice with TeA showed elevated malondialdehyde (MDA), reduced catalase (CAT) and superoxide dismutase (SOD) production; abnormal levels of aspartate transaminase (AST) and alanine transaminase (ALT). Treatment with Cin reversed TeA-induced alterations of antioxidant defense enzyme activities and significantly prevented TeA-induced organ damage. Thus, cinnamaldehyde showed therapeutic effects and toxicity reduction in TeA induced mycotoxicosis.


Assuntos
Acroleína/análogos & derivados , Antioxidantes/farmacologia , Ascomicetos/patogenicidade , Micoses/tratamento farmacológico , Extratos Vegetais/farmacologia , Ácido Tenuazônico/toxicidade , Acroleína/farmacologia , Animais , Masculino , Camundongos
5.
Plant Physiol ; 187(1): 409-429, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618145

RESUMO

Phytopathogen xylanases play critical roles in pathogenesis, likely due to their ability to degrade plant structural barriers and manipulate host immunity. As an invader of plant xylem vessels, the fungus Verticillium dahliae is thought to deploy complex cell wall degrading enzymes. Comparative genomics analyses revealed that the V. dahliae genome encodes a family of six xylanases, each possessing a glycosyl hydrolase 11 domain, but the functions of these enzymes are undetermined. Characterizing gene deletion mutants revealed that only V. dahliae xylanase 4 (VdXyn4) degraded the plant cell wall and contributed to the virulence of V. dahliae. VdXyn4 displayed cytotoxic activity and induced a necrosis phenotype during the late stages of infection, leading to vein and petiole collapse that depended on the enzyme simultaneously localizing to nuclei and chloroplasts. The internalization of VdXyn4 was in conjunction with that of the plasma membrane complexLeucine-rich repeat (LRR)-receptor-like kinase suppressor of BIR1-1 (SOBIR1)/LRR-RLK BRI1-associated kinase-1 (BAK1), but we could not rule out the possibility that VdXyn4 may also act as an apoplastic effector. Immune signaling (in the SA-JA pathways) induced by VdXyn4 relative to that induced by known immunity effectors was substantially delayed. While cytotoxic activity could be partially suppressed by known effectors, they failed to impede necrosis in Nicotiana benthamiana. Thus, unlike typical effectors, cytotoxicity of VdXyn4 plays a crucial intracellular role at the late stages of V. dahliae infection and colonization, especially following pathogen entry into the xylem; this cytotoxic activity is likely conserved in the corresponding enzyme families in plant vascular pathogens.


Assuntos
Ascomicetos/fisiologia , Endo-1,4-beta-Xilanases/genética , Proteínas Fúngicas/genética , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/enzimologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo
6.
Appl Microbiol Biotechnol ; 105(19): 7395-7410, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34536105

RESUMO

In eukaryotes, myosin provides the necessary impetus for a series of physiological processes, including organelle movement, cytoplasmic flow, cell division, and mitosis. Previously, three members of myosin were identified in Magnaporthe oryzae, with class II and class V myosins playing important roles in intracellular transport, fungal growth, and pathogenicity. However, limited is known about the biological function of the class I myosin protein in the rice blast fungus. Here, we found that Momyo1 is highly expressed during conidiation and infection. Functional characterization of this gene via RNA interference (RNAi) revealed that Momyo1 is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The Momyo1 knockdown mutant is defective in formation of appressorium-like structures (ALS) at the hyphal tips. In addition, Momyo1 also displays defects on cell wall integrity, hyphal hydrophobicity, extracellular enzyme activities, endocytosis, and formation of the Spitzenkörper. Furthermore, Momyo1 was identified to physically interact with the MoShe4, a She4p/Dim1p orthologue potentially involved in endocytosis, polarization of the actin cytoskeleton. Overall, our findings provide a novel insight into the regulatory mechanism of Momyo1 that is involved in fungal growth, cell wall integrity, endocytosis, and virulence of M. oryzae. KEY POINTS: • Momyo1 is required for vegetative growth and pigmentation of M. oryzae. • Momyo1 is essential for cell wall integrity and endocytosis of M. oryzae. • Momyo1 is involved in hyphal surface hydrophobicity of M. oryzae.


Assuntos
Ascomicetos/patogenicidade , Endocitose , Miosinas , Ascomicetos/crescimento & desenvolvimento , Miosinas/genética , Virulência
7.
Mol Plant Pathol ; 22(10): 1180-1194, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374201

RESUMO

Heterotrimeric G-proteins are one of the highly conserved signal transducers across phyla. Despite the obvious importance of G-proteins in controlling various plant growth and environmental responses, there is no information describing the regulatory complexity of G-protein networks during pathogen response in a polyploid crop. Here, we investigated the role of extra-large G-proteins (XLGs) in the oilseed crop Brassica juncea, which has inherent susceptibility to the necrotrophic fungal pathogen Sclerotinia sclerotiorum. The allotetraploid B. juncea genome contains multiple homologs of three XLG genes (two BjuXLG1, five BjuXLG2, and three BjuXLG3), sharing a high level of sequence identity, gene structure organization, and phylogenetic relationship with the progenitors' orthologs. Quantitative reverse transcription PCR analysis revealed that BjuXLGs have retained distinct expression patterns across plant developmental stages and on S. sclerotiorum infection. To determine the role of BjuXLG genes in the B. juncea defence response against S. sclerotiorum, RNAi-based suppression was performed. Disease progression analysis showed more rapid lesion expansion and fungal accumulation in BjuXLG-RNAi lines compared to the vector control plants, wherein suppression of BjuXLG3 homologs displayed more compromised defence response at the later time point. Knocking down BjuXLGs caused impairment of the host resistance mechanism to S. sclerotiorum, as indicated by reduced expression of defence marker genes PDF1.2 and WRKY33 on pathogen infection. Furthermore, BjuXLG-RNAi lines showed reduced accumulation of leaf glucosinolates on S. sclerotiorum infection, wherein aliphatic glucosinolates were significantly compromised. Overall, our data suggest that B. juncea XLG genes are important signalling nodes modulating the host defence pathways in response to this necrotrophic pathogen.


Assuntos
Ascomicetos/patogenicidade , Proteínas de Ligação ao GTP/metabolismo , Glucosinolatos , Mostardeira , Doenças das Plantas , Glucosinolatos/metabolismo , Mostardeira/metabolismo , Mostardeira/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
8.
J Basic Microbiol ; 61(10): 923-939, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34374439

RESUMO

Pea (Pisum sativum L.) is of global importance as a food crop for its edible pod and seed. A new disease causing the tan to light brown blighted stems and pods has occurred in pea (P. sativum L.) plants in Chapainawabganj district, Bangladesh. A fungus with white-appressed mycelia and large sclerotia was consistently isolated from symptomatic tissues. The fungus formed funnel-shaped apothecia with sac-like ascus and endogenously formed ascospores. Healthy pea plants inoculated with the fungus produced typical white mold symptoms. The internal transcribed spacer sequences of the fungus were 100% similar to Sclerotinia sclerotiorum, considering the fungus to be the causative agent of white mold disease in pea, which was the first record in Bangladesh. Mycelial growth and sclerotial development of S. sclerotiorum were favored at 20°C and pH 5.0. Glucose was the best carbon source to support hyphal growth and sclerotia formation. Bavistin and Amistar Top inhibited the radial growth of the fungus completely at the lowest concentration. In planta, foliar application of Amistar Top showed the considerable potential to control the disease at 1.0% concentration until 7 days after spraying, while Bavistin prevented infection significantly until 15 days after spraying. A large majority (70.93%) of genotypes, including tested released pea cultivars, were susceptible, while six genotypes (6.98%) appeared resistant to the disease. These results on identification, characterization, host resistance, and fungicidal control of white mold could be valuable to achieve improved management of a new disease problem for pea cultivation.


Assuntos
Ascomicetos/patogenicidade , Pisum sativum/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Fungicidas Industriais/farmacologia , Genótipo , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Virulência
9.
Mol Plant ; 14(11): 1901-1917, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303024

RESUMO

Leaf senescence, the final stage of leaf development, is influenced by numerous internal and environmental signals. However, how biotic stresses such as pathogen infection regulate leaf senescence remains largely unclear. In this study, we found that the premature leaf senescence in Arabidopsis caused by the soil-borne vascular fungus Verticillium dahliae was impaired by disruption of a protein elicitor from V. dahliae 1 named PevD1. Constitutive or inducible overexpression of PevD1 accelerated Arabidopsis leaf senescence. Interestingly, a senescence-associated NAC transcription factor, ORE1, was targeted by PevD1. PevD1 could interact with and stabilize ORE1 protein by disrupting its interaction with the RING-type ubiquitin E3 ligase NLA. Mutation of ORE1 suppressed the premature senescence caused by overexpressing PevD1, whereas overexpression of ORE1 or PevD1 led to enhanced ethylene production and thereby leaf senescence. We showed that ORE1 directly binds the promoter of ACS6 and promotes its expression for mediating PevD1-induced ethylene biosynthesis. Loss-of-function of ACSs could suppress V. dahliae-induced leaf senescence in ORE1-overexpressing plants. Furthermore, we found thatPevD1 also interacts with Gossypium hirsutum ORE1 (GhORE1) and that virus-induced gene silencing of GhORE1 delays V. dahliae-triggered leaf senescence in cotton, indicating a possibly conserved mechanism in plants. Taken together, these results suggest that V. dahliae induces leaf senescence by secreting the effector PevD1 to manipulate the ORE1-ACS6 cascade, providing new insights into biotic stress-induced senescence in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Ascomicetos/patogenicidade , Etilenos/biossíntese , Proteínas Fúngicas/imunologia , Doenças das Plantas/microbiologia , Senescência Vegetal , Fatores de Transcrição/metabolismo , Arabidopsis/microbiologia , Ascomicetos/imunologia , Proteínas Fúngicas/metabolismo , Folhas de Planta
10.
Plant J ; 107(6): 1681-1696, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34231270

RESUMO

Plant expansins are structural cell wall-loosening proteins implicated in several developmental processes and responses to environmental constraints and pathogen infection. To date, there is limited information about the biological function of expansins-like B (EXLBs), one of the smallest and less-studied subfamilies of plant expansins. In the present study, we conducted a functional analysis of the wild Arachis AdEXLB8 gene in transgenic tobacco (Nicotiana tabacum) plants to clarify its putative role in mediating defense responses to abiotic and biotic stresses. First, its cell wall localization was confirmed in plants expressing an AdEXLB8:eGFP fusion protein, while nanomechanical assays indicated cell wall reorganization and reassembly due to AdEXLB8 overexpression without compromising the phenotype. We further demonstrated that AdEXLB8 increased tolerance not only to isolated abiotic (drought) and biotic (Sclerotinia sclerotiorum and Meloidogyne incognita) stresses but also to their combination. The jasmonate and abscisic acid signaling pathways were clearly favored in transgenic plants, showing an activated antioxidative defense system. In addition to modifications in the biomechanical properties of the cell wall, we propose that AdEXLB8 overexpression interferes with phytohormone dynamics leading to a defense primed state, which culminates in plant defense responses against isolated and combined abiotic and biotic stresses.


Assuntos
Arachis/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Animais , Ascomicetos/patogenicidade , Fenômenos Biomecânicos , Parede Celular/genética , Parede Celular/metabolismo , Ciclopentanos/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/microbiologia , Tylenchoidea/patogenicidade
11.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298948

RESUMO

Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.


Assuntos
Ascomicetos , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Gossypium , Doenças das Plantas , Fatores de Transcrição , Regulação para Cima , Fatores de Virulência , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Gossypium/genética , Gossypium/metabolismo , Gossypium/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
12.
J Virol ; 95(17): e0026421, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132570

RESUMO

Uncharacterized viral genomes that encode circular replication-associated proteins of single-stranded DNA viruses have been discovered by metagenomics/metatranscriptomics approaches. Some of these novel viruses are classified in the newly formed family Genomoviridae. Here, we determined the host range of a novel genomovirus, SlaGemV-1, through the transfection of Sclerotinia sclerotiorum with infectious clones. Inoculating with the rescued virions, we further transfected Botrytis cinerea and Monilinia fructicola, two economically important members of the family Sclerotiniaceae, and Fusarium oxysporum. SlaGemV-1 causes hypovirulence in S. sclerotiorum, B. cinerea, and M. fructicola. SlaGemV-1 also replicates in Spodoptera frugiperda insect cells but not in Caenorhabditis elegans or plants. By expressing viral genes separately through site-specific integration, the replication protein alone was sufficient to cause debilitation. Our study is the first to demonstrate the reconstruction of a metagenomically discovered genomovirus without known hosts with the potential of inducing hypovirulence, and the infectious clone allows for studying mechanisms of genomovirus-host interactions that are conserved across genera. IMPORTANCE Little is known about the exact host range of widespread genomoviruses. The genome of soybean leaf-associated gemygorvirus-1 (SlaGemV-1) was originally assembled from a metagenomic/metatranscriptomic study without known hosts. Here, we rescued SlaGemV-1 and found that it could infect three important plant-pathogenic fungi and fall armyworm (S. frugiperda Sf9) insect cells but not a model nematode, C. elegans, or model plant species. Most importantly, SlaGemV-1 shows promise for inducing hypovirulence of the tested fungal species in the family Sclerotiniaceae, including Sclerotinia sclerotiorum, Botrytis cinerea, and Monilinia fructicola. The viral determinant of hypovirulence was further identified as replication initiation protein. As a proof of concept, we demonstrate that viromes discovered in plant metagenomes can be a valuable genetic resource when novel viruses are rescued and characterized for their host range.


Assuntos
Ascomicetos/virologia , Geminiviridae/isolamento & purificação , Especificidade de Hospedeiro , Metagenoma , Nicotiana/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Virulência , Animais , Ascomicetos/genética , Ascomicetos/patogenicidade , Botrytis/genética , Botrytis/patogenicidade , Botrytis/virologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/virologia , Fusarium/genética , Fusarium/patogenicidade , Fusarium/virologia , Geminiviridae/classificação , Geminiviridae/genética , Genoma Viral , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Nicotiana/microbiologia , Nicotiana/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion
13.
BMC Plant Biol ; 21(1): 220, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33992078

RESUMO

BACKGROUND: Verticillium wilt, caused by the soil borne fungus Verticillium dahliae, is a major threat to cotton production worldwide. An increasing number of findings indicate that WAK genes participate in plant-pathogen interactions, but their roles in cotton resistance to V. dahliae remain largely unclear. RESULTS: Here, we carried out a genome-wide analysis of WAK gene family in Gossypium hirsutum that resulted in the identification of 81 putative GhWAKs, which were all predicated to be localized on plasma membrane. In which, GhWAK77 as a representative was further located in tobacco epidermal cells using transient expression of fluorescent fusion proteins. All GhWAKs could be classified into seven groups according to their diverse protein domains, indicating that they might sense different outside signals to trigger intracellular signaling pathways that were response to various environmental stresses. A lot of cis-regulatory elements were predicted in the upstream region of GhWAKs and classified into four main groups including hormones, biotic, abiotic and light. As many as 28 GhWAKs, playing a potential role in the interaction between cotton and V. dahliae, were screened out by RNA-seq and qRT-PCR. To further study the function of GhWAKs in cotton resistance to V. dahliae, VIGS technology was used to silence GhWAKs. At 20 dpi, VIGSed plants exhibited more chlorosis and wilting than the control plants. The disease indices of VIGSed plants were also significantly higher than those of the control. Furthermore, silencing of GhWAKs significantly affected the expression of JA- and SA-related marker genes, increased the spread of V. dahliae in the cotton stems, dramatically compromised V. dahliae-induced accumulation of lignin, H2O2 and NO, but enhanced POD activity. CONCLUSION: Our study presents a comprehensive analysis on cotton WAK gene family for the first time. Expression analysis and VIGS assay provided direct evidences on GhWAKs participation in the cotton resistance to V. dahliae.


Assuntos
Ascomicetos/patogenicidade , Parede Celular/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Gossypium/genética , Gossypium/imunologia , Fosfotransferases/metabolismo , Mapeamento Cromossômico , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Produtos Agrícolas/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Gossypium/microbiologia , Interações Hospedeiro-Patógeno/genética
14.
Chem Biodivers ; 18(5): e2100079, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33821531

RESUMO

Eight natural biphenyl-type phytoalexins exhibiting antifungal effect were isolated from the leaves of Sorbus pohuashanensis, which invaded by Alternaria tenuissi, and their growth inhibition rate towards A. tenuissi were 50.3 %, 54.0 %, 66.4 %, 58.8 %, 48.5 %, 51.0 %, 33.3 %, and 37.0 %, respectively. In vivo activity assay verified the protective effect of these natural biphenyls on tobacco leaves. The observation of mycelial morphology revealed that these compounds possessed adverse effects on mycelial growth of A. tenuissi. Subsequently, the most potent active compounds, 3',4',5'-trimethoxy[1,1'-biphenyl]-4-ol (3) and 3,4,4',5-tetramethoxy-1,1'-biphenyl (4), were conducted to the further antifungal evaluation and showed significant activity against the other four crop pathogens, Fusarium graminearum, Helminthosporium maydis, Sclerotinia sclerotiorum, and Exserohilum turcicum. Further, the structure-activity relationships and biosynthesis of these compounds were speculated in this work.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Compostos de Bifenilo/farmacologia , Sorbus/química , Alternaria/crescimento & desenvolvimento , Alternaria/patogenicidade , Antifúngicos/química , Antifúngicos/isolamento & purificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Compostos de Bifenilo/química , Compostos de Bifenilo/isolamento & purificação , Bipolaris/efeitos dos fármacos , Bipolaris/patogenicidade , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais , Folhas de Planta/química
15.
Genes (Basel) ; 12(4)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919788

RESUMO

Brown rot is the most economically important fungal disease of stone fruits and is primarily caused by Monilinia laxa and Monlinia fructicola. Both species co-occur in European orchards although M. fructicola is considered to cause the most severe yield losses in stone fruit. This study aimed to generate a high-quality genome of M. fructicola and to exploit it to identify genes that may contribute to pathogen virulence. PacBio sequencing technology was used to assemble the genome of M. fructicola. Manual structural curation of gene models, supported by RNA-Seq, and functional annotation of the proteome yielded 10,086 trustworthy gene models. The genome was examined for the presence of genes that encode secreted proteins and more specifically effector proteins. A set of 134 putative effectors was defined. Several effector genes were cloned into Agrobacterium tumefaciens for transient expression in Nicotiana benthamiana plants, and some of them triggered necrotic lesions. Studying effectors and their biological properties will help to better understand the interaction between M. fructicola and its stone fruit host plants.


Assuntos
Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Ascomicetos/genética , Ascomicetos/metabolismo , Curadoria de Dados , Europa (Continente) , Regulação Fúngica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Metabolismo Secundário , Análise de Sequência de RNA , Virulência
16.
Mol Plant Pathol ; 22(6): 710-726, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33835616

RESUMO

Fus3/Kss1, also known as Pmk1 in several pathogenic fungi, is a component of the mitogen-activated protein kinase (MAPK) signalling pathway that functions as a regulator in fungal development, stress response, mating, and pathogenicity. Cytospora chrysosperma, a notorious woody plant-pathogenic fungus, causes canker disease in many species, and its Pmk1 homolog, CcPmk1, is required for fungal development and pathogenicity. However, the global regulation network of CcPmk1 is still unclear. In this study, we compared transcriptional analysis between a CcPmk1 deletion mutant and the wild type during the simulated infection process. A subset of transcription factor genes and putative effector genes were significantly down-regulated in the CcPmk1 deletion mutant, which might be important for fungal pathogenicity. Additionally, many tandem genes were found to be regulated by CcPmk1. Eleven out of 68 core secondary metabolism biosynthesis genes and several gene clusters were significantly down-regulated in the CcPmk1 deletion mutant. GO annotation of down-regulated genes showed that the ribosome biosynthesis-related processes were over-represented in the CcPmk1 deletion mutant. Comparison of the CcPmk1-regulated genes with the Pmk1-regulated genes from Magnaporthe oryzae revealed only a few overlapping regulated genes in both CcPmk1 and Pmk1, while the enrichment GO terms in the ribosome biosynthesis-related processes were also found. Subsequently, we calculated that in vitro feeding artificial small interference RNAs of CcPmk1 could silence the target gene, resulting in inhibited fungal growth. Furthermore, silencing of BcPmk1 in Botrytis cinerea with conserved CcPmk1 and BcPmk1 fragments could significantly compromise fungal virulence using the virus-induced gene silencing system in Nicotiana benthamiana. These results suggest that CcPmk1 functions as a regulator of pathogenicity and can potentially be designed as a target for broad-spectrum disease control, but unintended effects on nonpathogenic fungi need to be avoided.


Assuntos
Ascomicetos/genética , Botrytis/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Transdução de Sinais , Árvores/microbiologia , Ascomicetos/patogenicidade , Botrytis/patogenicidade , Regulação para Baixo , Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Doenças das Plantas/prevenção & controle , Nicotiana/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
17.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33673023

RESUMO

Botryosphaeria dothidea is a pathogen with worldwide distribution, infecting hundreds of species of economically important woody plants. It infects and causes various symptoms on apple plants, including wart and canker on branches, twigs, and stems. However, the mechanism of warts formation is unclear. In this study, we investigated the mechanism of wart formation by observing the transection ultrastructure of the inoculated cortical tissues at various time points of the infection process and detecting the expression of genes related to the pathogen pathogenicity and plant defense response. Results revealed that wart induced by B. dothidea consisted of proliferous of phelloderm cells, the newly formed secondary phellem, and the suberized phelloderm cells surrounding the invading mycelia. The qRT-PCR analysis revealed the significant upregulation of apple pathogenesis-related and suberification-related genes and a pathogen cutinase gene Bdo_10846. The Bdo_10846 knockout transformants showed reduced cutinase activity and decreased virulence. Transient expression of Bdo_10846 in Nicotiana benthamiana induced ROS burst, callose formation, the resistance of N. benthamiana to Botrytis cinerea, and significant upregulation of the plant pathogenesis-related and suberification-related genes. Additionally, the enzyme activity is essential for the induction. Virus-induced gene silencing demonstrated that the NbBAK1 and NbSOBIR1 expression were required for the Bdo_10846 induced defense response in N. benthamiana. These results revealed the mechanism of wart formation induced by B. dothidea invasion and the important roles of the cutinase Bdo_10846 in pathogen virulence and in inducing plant immunity.


Assuntos
Ascomicetos/genética , Hidrolases de Éster Carboxílico/genética , Proteínas Fúngicas/genética , Malus/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Ascomicetos/patogenicidade , Hidrolases de Éster Carboxílico/classificação , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Malus/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Virulência/genética
18.
Microbiol Res ; 248: 126749, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33744788

RESUMO

The fungal cell wall plays an essential role in maintaining cellular integrity and facing complex and changing environmental conditions. Whether a fungus successfully invades a host depends on whether it evades the plant's innate immune system, which recognizes the conserved components of the fungal cell wall, such as chitin. Fungi developed infection-related changes in cell wall composition in co-evolution with nature to solve this problem. One of the changes is the deacetylation of chitin by chitin deacetylase (CDA) to produce a polysaccharide that influences the infection of pathogenic fungi. The present study revealed the functions of PoCda7, a chitin deacetylase in Pyricularia oryzae. Phenotype analysis revealed that the knockout mutant of ΔPocda7 had no significant effect on fungal morphogenic development, including conidiation, germination, appressorial formation and cell wall of conidium and hyphae but was sensitive to reactive oxygen species. Glycerols are necessary to generate sufficient turgor in appressoria for invading the host surface. As a result of the decreased appressorium turgor pressure and decreased appressorium-mediated invasion, the fungal virulence of ΔPocda7 was significantly reduced in host plants. PoCda7 inhibited the cell death of leaves in Nicotiana benthamiana. Additionally, the expression of PoCDA7 was repressed in the early stage of infection. Subcellular localization experiments showed that PoCda7 was localized in the cell wall, and its fluorescence transferred to the EIHM and BIC when the rice blast fungus infected the rice leaf sheath, which was referred to as a candidate apoplastic effector in P. oryzae.


Assuntos
Amidoidrolases/metabolismo , Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Amidoidrolases/genética , Sequência de Aminoácidos , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Parede Celular/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Oryza/metabolismo , Alinhamento de Sequência , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
19.
mSphere ; 6(1)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627507

RESUMO

Canker disease is caused by the fungus Cytospora chrysosperma and damages a wide range of woody plants, causing major losses to crops and native plants. Plant pathogens secrete virulence-related effectors into host cells during infection to regulate plant immunity and promote colonization. However, the functions of C. chrysosperma effectors remain largely unknown. In this study, we used Agrobacterium tumefaciens-mediated transient expression system in Nicotiana benthamiana and confocal microscopy to investigate the immunoregulation roles and subcellular localization of CcCAP1, a virulence-related effector identified in C. chrysosperma CcCAP1 was significantly induced in the early stages of infection and contains cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily domain with four cysteines. CcCAP1 suppressed the programmed cell death triggered by Bcl-2-associated X protein (BAX) and the elicitin infestin1 (INF1) in transient expression assays with Nicotiana benthamiana The CAP superfamily domain was sufficient for its cell death-inhibiting activity and three of the four cysteines in the CAP superfamily domain were indispensable for its activity. Pathogen challenge assays in N. benthamiana demonstrated that transient expression of CcCAP1 promoted Botrytis cinerea infection and restricted reactive oxygen species accumulation, callose deposition, and defense-related gene expression. In addition, expression of green fluorescent protein-labeled CcCAP1 in N. benthamiana showed that it localized to both the plant nucleus and the cytoplasm, but the nuclear localization was essential for its full immune inhibiting activity. These results suggest that this virulence-related effector of C. chrysosperma modulates plant immunity and functions mainly via its nuclear localization and the CAP domain.IMPORTANCE The data presented in this study provide a key resource for understanding the biology and molecular basis of necrotrophic pathogen responses to Nicotiana benthamiana resistance utilizing effector proteins, and CcCAP1 may be used in future studies to understand effector-triggered susceptibility processes in the Cytospora chrysosperma-poplar interaction system.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Núcleo Celular/genética , Proteínas Fúngicas/genética , Nicotiana/imunologia , Imunidade Vegetal , Fatores de Virulência/genética , Morte Celular , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Virulência
20.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430504

RESUMO

Fungal effectors play important roles in host-pathogen interactions. Botryosphaeria dothidea is an ascomycetous fungus that is responsible for the diseases of hundreds of woody plant species, including apple ring rot, which seriously affects apples worldwide. However, little is known about the effectors of B. dothidea. In this study, we analyzed the B. dothidea genome and predicted 320 candidate effector genes, 124 of which were successfully amplified and cloned. We investigated the effects of these genes on plant cell death in Nicotiana benthamiana while using a transient expression system. Twenty-four hours after initial inoculation with Agrobacterium tumefaciens cells carrying candidate effectors, the infiltrated leaves were challenged with A. tumefaciens cells carrying the BAX gene. In total, 116 candidate effectors completely inhibited, while one partially inhibited, the programmed cell death (PCD) of N. benthamiana induced by BAX, whereas seven candidate effectors had no effect. We then further tested seven candidate effectors able to suppress BAX-triggered PCD (BT-PCD) and found that they all completely inhibited PCD triggered by the elicitors INF1, MKK1, and NPK1. This result suggests that these effectors were activated in order to suppress pathogen-associated molecular pattern-triggered immunity. The signal peptides of these candidate effectors exhibited secretory activity in yeast (pSUC2 vector). Moreover, the respective deletion of Bdo_11198 and Bdo_12090 significantly reduced the virulence of B. dothidea. These results suggest that these effectors play important roles in the interaction of B. dothidea with its hosts.


Assuntos
Ascomicetos/genética , Interações Hospedeiro-Patógeno/genética , Malus/genética , Doenças das Plantas/genética , Agrobacterium tumefaciens/genética , Ascomicetos/patogenicidade , Malus/imunologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Nicotiana/genética , Nicotiana/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA